Thursday, March 2, 2017 9:14 AM

Look at all possible topologies on $P = TIX_{\alpha}$ $\{\phi, P\} \subset \cdots \subset J_{TI} \subset \cdots \subset J_{Box} \subset \cdots \subset P(P)$ guarantee continuity of each projection mapping $TB : P \longrightarrow XB$

Another usual need for study W T> P= TX TB XB f is continuous \Leftrightarrow each Thof is so.

">" is a natural property "="helps us all the time, e.g. $(x,y) \mapsto (xy\sin(x+y), (x+y)e^{x-y}, x^2-y^2)$ To check continuity, one only need to verify each coordinate function. Now, want to have the property that $(w,J_W) \xrightarrow{f} (P,J) \xrightarrow{T_B} (x_B,J_B)$ if each Tpof is continuous then so is f, f(V) & Jw where I is chosen from $\{\emptyset, P\} \subset \cdots \subset \mathbb{J}_{\Pi} \subset \cdots \subset \mathbb{J}_{RM} \subset \cdots \subset \mathbb{P}(P)$ easy difficult

Theorem. It is the maximal topology for $P = \prod_{\alpha \in I} X_{\alpha}$ such that for all $f: W \longrightarrow P$, it is continuous whenever each $\pi_{B} \circ f: W \longrightarrow X_{B}$ is continuous.

Proof. To prove maximality, let I be a topology for P doing the job.

Try to show J C JT.

Take any $U \in J$, why does $U \in J_{\pi}$? Simply consider W = P, $J_{W} = J_{\Pi}$, f = id. i.e., $id : (P, J_{\Pi}) \longrightarrow (P, J)$

Clearly, each Tipoid = Tip: $(P,J_{Ti}) \longrightarrow X_{P}$ is continuous, so is id: $(P,J_{Ti}) \rightarrow (P,J)$ Hence, id' $(U) = U \in J_{Ti}$.

We still need to show JTT does the job.
Assume that foTTB: (P, JTT) -> XB is continuous

and UEJT. Try to prove f(U) EJw.

As $\overline{U} = \bigcup_{k=1}^{\infty} \overline{T}_{\beta_k}^{\gamma_k}(V_k)$, $V_k \in J_{\beta_k}$

 $f'(U) = \bigcup_{k=1}^{\infty} f'(V_k) = J_W$ $= \bigcup_{k=1}^{\infty} (T_{S_k} \circ f)'(V_k) \in J_W$

Example. Let
$$I=M$$
, $(X_k, J_k)=(R, std) \forall k \in I$
 $(W, J_W) = (R, std)$
 $f: (R, std) \longrightarrow R^M = \Pi R$
 $k \in M$
 $t \longrightarrow (t, t, t, t, ..., t, ...)$

 $f'(V) \subset \mathbb{R}$ contains $0 \in \mathbb{R}$ but it cannot be open. Otherwise, $\exists \ \varepsilon > 0$ $(-\varepsilon, \varepsilon) \subset f'(V)$ But $f(-\varepsilon, \varepsilon) \subset V$

(-2,2) x (-2,2) x (-2,2) x ... x (-2,2) x

contradiction